

THE VEXATION OF (CYCLING) VOLES

Dr. Dana Sanchez

1

Prof & Extension Wildlife Specialist
Dana.Sanchez@Oregonstate.edu
http://fw.oregonstate.edu/content/extension-wildlife
https://ask2.extension.org/

Ecological roles of burrowing animals

- · Aid soil formation, aeration, and nutrient mixing
- Move nutrients from leach zone to root zone
- Aid water infiltration reduces erosion
- Add soil nutrients, organic & inorganic matter
- Food for predator species
- Provide habitat for other species
- Promote fine- and landscape-scale vegetation and ecosystem diversity through eating some plant species and helping others compete
- Promote and enable animal biodiversity
- · Often play keystone roles as ecosystem engineers

Core tactics on the human-wildlife interface

- Anticipate and manage to avoid/prevent a problem Accurate Species ID
- Modify habitat to reduce carrying capacity
 - **■** Food **↑** Predation/mortality
- •Block entry/exclude
- •Remove the animal(s)
- •>>Coordinate with other humans!

3

Voles in the Northern hemisphere

- Subfamily Arvicolinae
 - Subfamily includes lemmings, voles, & muskrats
 - Worldwide, >70 vole species
 - Diversity in diets, species ecology, natural history, habitats occupied
 - Some burrow, others don't
 - Active year-round
 - Some noted for severe population cycles

Across U.S., vole species commonly involved in conflicts

- Meadow (Microtus pennsylvanicus)
 - Vast geographic range

5

- Prairie (Microtus ochrogaster)
- Pine or woodland (*Microtus pinetorum*)
- California (Microtus californicus)

Voles in Oregon

• Oregon: 13 vole species

8

- Oregon's vole species range from tree-dwellers to fungi-eaters and include some which never build burrows, and a couple of which we know very little...
- But the gray-tailed vole is the Willamette Valley's *very own* endemic species...& *it cycles*

Voles east of the Cascades crest in Oregon, suspects implicated in agricultural conflicts

- Heather (Phenacomys intermedius)
 - Limited tunnels, diet from grasses to shrub bark
- Sagebrush (Lemmiscus curtatus)
 - Grasses & fungi in sagebrush areas Uses other critters' burrows, possibly irruptive..?
- Long-tailed (Microtus longicaudus)
 - Broad diet; broad distribution; likely (?) cycles
- Montana (Microtus montanus)
 - Forbs & grasses (expands during peaks)
 - Burrows
 - known to cycle
 - e.g., 1957 S OR "mouse plague"

Vole populations fluctuate worldwide: Boom-bust-simmer across years...

Within-year opportunity?

% adult female gray-tailed voles in breeding condition (from Wolff et al. 1994)

- May-Oct: 78-92%
- Nov: 68%
- Dec: 18%
- Jan-Feb: 0%
- Mar: 38%

9

10

Gray-tailed vole

- •Short lifespan: 2 to 16 months, but high reproductive potential (Mar-Oct/Nov/Dec?) wolff et al. 1994
- •Many litters/year; 3 weeks to mature! Mean litter size 4.4 +/- 1.4 individuals

•(In)famous for achieving nearexponential population growth in some years

Core tactics on the human-wildlife interface

- Anticipate and manage to avoid/prevent a problem
 - Accurate Species ID
- Modify habitat to reduce carrying capacity
 - Food Predation/mortality
- •Block entry/exclude
- •Remove the animal(s)
- •>>Coordinate with other humans!

11 12

13

Reducing populations: Why not just move them?

- Low survival
 - Intra-specific aggression
 - Vulnerable to predation
 - Homing behavior = risks along the way
 - · Likely to starve, do poorly
 - Humans unlikely to select sites that = habitat
- Disrupt resident population
- Illegal in most cases
- Disease transmission
- Ethical issue of "moving the problem"

Reducing populations via lethal removal Species ecology informs:

- Trap* selection
- Trap placement
- To bait or not to bait
- When to trap
 - Minding annual, seasonal, environmental conditions

*Trapping is not legal in all states

15 16

Toxicants as tools to lethally reduce population

READ THE LABEL. FOLLOW THE LABEL. LABEL IS THE LAW.

- Responsibility to prevent non-target kills including humans
- Retail (on the shelf) products vs. Restricted use products
- Keep in mind secondary and non-target impacts of toxicants
- Like traps, chemicals have no knowledge of what has encountered them.
 - Improper application of zinc phosphide bait for voles kills 1000s to >10,000 geese per event Usually 1-2 events per year in OR

17

Natural predators include the quiet ground force: Snakes

• Rubber boa

18

- Gopher snake
- Western terrestrial garden snake (2 subspecies)
- Northwestern garter snake
- Common garter snake
- Western rattlesnake

20

21 22

Common mammalian predators, in brief

• coyote Ubiquitous & omnivorous

• bobcat Widespread, less in highly cultivated; pure carnivores

• red fox Many habitat types; *lots of voles*,

• grey fox Brushy, "old fields" some urban; seasonal omnivory

• weasels Predominantly carnivorous

• spotted skunks Likely heavily depend on rodents in winter

• raccoon Ubiquitous & omnivorous

Cats on "rat patrol"? Not so fast.

• Cats directly cause or significantly contributed to 14% of recent extinctions on island ecosystems (mammals, reptiles, birds)

• In the contiguous U.S., cats kill 1.3-4.0 Billion birds annually. Loss S.R. et al. The impact of free-ranging domestic cats on wildlife of the United States. Nat. Commun. 4:1396 doi: 10.1038/ncomms2380 (2012).

Humane Solutions for cats to "experience the wild"

• https://abcbirds.org/program/cats-indoors/

• https://abcbirds.org/catio-solutions-cats/

23 24

Strategy: Reduce population at its lowest point to reduce number of breeders, thereby limiting the population's reproductive capacity ➤ Challenge – Few animals out there >> Harder to locate and trap "rarities" ➤ Challenge – Thousands of holes, but which have voles RIGHT NOW? ➤ Opportunity - Use dogs to locate those few active holes WITH animals near them RIGHT NOW & maximize trapping efficiency

Vole patrol:

34

First steps to an early warning system

Predict an impending "big year"

- Estimate abundance/rate of increase indicating an irruptive event
- Counting voles up till now \$\$\$:
 - Need something fast, relatively cheap, with regional relevance
- Tricky parts (there are many)

33

Vole patrol:Non-invasive methods, competing candidates Estimate from FLIR (forward-looking infrared) • Drone- vs. truck-mounted Develop genetic markers • Determine optimal conditions/seasons/moon/weather ≻mtDNA to ID vole species ➤ Can we ID INDIVIDUAL voles? • Develop and test estimates from counts □Allow population estimation? Test estimating power across growth stages □Can we count voles with scat? Many thanks to Dr. Christy Tanner and new collaborator, Dr. Josh Twining Additional thanks, Laurence Schafer, USDA-APHIS

Meadowfoam moat: Prospecting for a barrier crop

- Awaiting its opportunity, 2025

36

- Effective width? Add mint option?
- Inter-crop option for some crops?

35

Let's build a multi-state vole working group in the U.S.

• Similar groups:

• National mouse group (Australia)

• Working Group, Common Vole Management (Germany)

• FREDON network for vole management (France)

Dana.Sanchez@oregonstate.edu

39 40